Pesquisadores brasileiros criam novo método de obter diamantes em laboratório

Letícia Saturnino
Letícia Saturnino
Publicado em 08/07/2015 às 10:28

Foto: Divulgação. Foto: Divulgação.

A formação de diamantes na natureza depende, essencialmente, da presença de carbono em condições de alta pressão (da ordem de 15 gigapascal, que é um pouco mais do que 148 mil atmosferas) e alta temperatura (da ordem de 2.500 graus Celsius).

Essas condições, presentes no interior da Terra, podem ser obtidas também em laboratório. Uma forma bem conhecida para sintetizar diamante é pressionar certa quantidade de grafite (gerando alta pressão) e fazer passar por ela uma corrente elétrica (gerando alta temperatura). Os átomos de carbono de grafite são então rearranjados em uma diferente estrutura cristalina, constituindo o diamante convencional.

Outra forma de diamante, composta por nanocristais, já foi produzida em laboratório, também em condições de pressão e temperatura elevadas. Apesar de altamente desejada, devido à dureza e à resistência ainda maiores do que as dos diamantes naturais, sua produção envolveu um processo custoso, por conta dos equipamentos necessários.

Uma alternativa viável foi obtida por pesquisadores brasileiros. Neste caso, os mesmos patamares de pressão e temperatura foram alcançados mediante uma onda de choque gerada por laser de pulsos ultracurtos. Artigo descrevendo o experimento acaba de ser publicado no boletim on-line Scientific Reports, do grupo Nature.

“Além de gerar pulsos muito energéticos, o laser utilizado os emitia em intervalos extremamente curtos [de 25 femtossegundos, isto é, 25×10-15 segundos] e os concentrava em uma área extremamente reduzida [com raio de 65 micrômetros, isto é, de 65×10-6 metros]. Todos esses fatores convergiram para que pudéssemos alcançar os patamares necessários de pressão e temperatura da onda de choque”, disse à Agência FAPESP o físico Narcizo Marques de Souza Neto, pesquisador no Laboratório Nacional de Luz Síncrotron (LNLS) e idealizador do experimento, no contexto de projetos apoiados pela FAPESP.

“Conseguimos um nanomaterial final altamente desejável para várias aplicações [como potencial participante em componentes eletrônicos, em revestimento de próteses articulares, em marcadores celulares, em vetores de fármacos etc.] com recursos relativamente modestos”, sintetizou o físico Francisco Carlos Barbosa Maia, pós-doutorando no LNLS e principal autor do trabalho.

O trabalho também se destacou por sua simplicidade. A grafite empregada estava na fase policristalina, a mais comum, em vez da forma altamente ordenada e bastante cara conhecida como HOPG, que é usada em outros estudos. O laser utilizado, apesar de produzir pulsos ultracurtos com alta potência, também é acessível a laboratórios de médio porte, no país e no exterior. Veja o estudo completo na Fapesp.